Loop Groups and the Path Model

Loop Groups and the Path Model

Valentin Rappel

12.02.2019

Littelmann path model and MV cycles

- Littelmann path model [1997]: Combinatorial model for Lie algebra representations
- Gives: Branching rules, tensor product decomposition (Littelwood-Richardson coefficients), Characters,...
- Mirković-Vilonen cycles [2006]: Subvarieties of affine Grassmannians
- give geometric construction of Lie algebra representations
- Loop groups are differentiable analogues of affine Grassmannians
- Aim: Find differentiable analogue for Littelmann paths resp. MV-cycle
- Exhibit those to find connections

... Profit!

Notation I

G any Lie group.

- L(G) free loop group of G, i.e. maps $S^1 \to G$.
- ▶ $\Omega(G) \subseteq L(G)$, (based) loop group of G, i.e. $1 \mapsto 1_G$
- ► $L(SU_2)$ contains $z \mapsto \begin{pmatrix} iz & 0 \\ 0 & -iz^{-1} \end{pmatrix}$
- $\Omega(SU_2)$ contains $z \mapsto \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$

Notation II

- ► K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- s Lie algebra of S, purely imaginary, traceless, diagonal matrices
- G complexification of K, $SL_{n+1}(\mathbb{C})$
- ▶ with maximal torus T complexification of S, diagonal matrices of SL_{n+1}(C)
- X*(S) ⊆ s cocharacters of S, the kernel of the matrix exponential map
- ▶ $X^*_+(S) \subseteq \mathfrak{s}$ dominant cocharacters of *S*, increasing entries

The exponential of a path

- Π paths in \mathfrak{s} starting in 0 ending in $X^*(S)$
- (Littelmann) root operators $\Pi \to \Pi$
- $\exp: \mathfrak{s} \to S$ exponential of Lie group S
- Applying exp pointwise yields exp : $\Pi \rightarrow \Omega(S)$
- Example *SU*₂

$$\pi(t) = t\alpha^{\vee} \stackrel{\exp}{\mapsto} (z \mapsto \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix})$$

Loop Groups and the Path Model Path model on the loop group of a torus

A Loop Model Theorem (R.)

- Root operators integrate to operators on Ω(S)
- Resulting crystal parametrize bases for representations of Langlands dual group of K
- Weight computable via winding numbers
- Root operators are given by multipilication in the Loop group

Set $K = PU_3$:

Birkhoff decomposition

Problem: Extend root operators to $\Omega(K)$. Theorem (Pressley 1981) Every $\gamma \in \Omega(K)$ can be written as

$$\gamma = p_{-}\lambda p_{+}$$

where $\lambda \in X^*_+(S)$ is unique, $p_- \in L^-(G)$ and $p_+ \in L^+(G)$.

Remark

 $L^{-}(G), L^{+}(G)$ analogues of parabolic groups. Also true for K = S. Then p_{-}, p_{+} unique up to constant.

Work in progress

- Characterization of maximal element in crystal via Birkhoff decomposition
- Description of root operators for factors of Birkhoff decomposition
- Extend root operators to $\Omega(K)$ via this description

Remark

Uniqueness of p_-, p_+ still given on open, dense subset.

Loop Groups and the Path Model

Birkhoff decomposition: Work in progress

Thank you for your attention