Bott-Samelson manifolds, Loop groups and the Path Model

Valentin Rappel

November 3, 2020

Universität zu Köln

Motivation

• Littelmann path model [1995]: Combinatorial model for Lie algebra representations

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...
- Mirković-Vilonen (MV) cycles [2000]: Subvarieties of affine Grassmannians

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...
- Mirković-Vilonen (MV) cycles [2000]: Subvarieties of affine Grassmannians
- Geometric construction of algebraic group representations

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...
- Mirković-Vilonen (MV) cycles [2000]: Subvarieties of affine Grassmannians
- Geometric construction of algebraic group representations
- Algebra: affine Grassmannians \leftrightarrow Diff. Geometry: Loop group

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...
- Mirković-Vilonen (MV) cycles [2000]: Subvarieties of affine Grassmannians
- Geometric construction of algebraic group representations
- Algebra: affine Grassmannians \leftrightarrow Diff. Geometry: Loop group
- Aim: Littelmann paths and MV cycles in loop groups

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...
- Mirković-Vilonen (MV) cycles [2000]: Subvarieties of affine Grassmannians
- Geometric construction of algebraic group representations
- Algebra: affine Grassmannians \leftrightarrow Diff. Geometry: Loop group
- Aim: Littelmann paths and MV cycles in loop groups
- Later Aim: Relate combinatorial and geometric interpretations via these

- Littelmann path model [1995]: Combinatorial model for Lie algebra representations
- Branching rules, tensor product decomposition, characters,...
- Mirković-Vilonen (MV) cycles [2000]: Subvarieties of affine Grassmannians
- Geometric construction of algebraic group representations
- Algebra: affine Grassmannians \leftrightarrow Diff. Geometry: Loop group
- Aim: Littelmann paths and MV cycles in loop groups
- Later Aim: Relate combinatorial and geometric interpretations via these
- e.g.: Moment polytopes, Duistermaat-Heckmann measures, but this time symplectic

• Root operators descend to loop group of compact torus

- Root operators descend to loop group of compact torus
- Loop model embeds into generalized Bott–Samelson manifold Γ_η

- Root operators descend to loop group of compact torus
- Loop model embeds into generalized Bott–Samelson manifold Γ_η
- Γ_{η} symplectic for η in dominant direction

- Root operators descend to loop group of compact torus
- Loop model embeds into generalized Bott–Samelson manifold Γ_η
- Γ_{η} symplectic for η in dominant direction
- Moment Polytope is Weyl polytope

- Root operators descend to loop group of compact torus
- Loop model embeds into generalized Bott–Samelson manifold Γ_η
- Γ_η symplectic for η in dominant direction
- Moment Polytope is Weyl polytope
- Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$

- Root operators descend to loop group of compact torus
- Loop model embeds into generalized Bott–Samelson manifold Γ_η
- Γ_{η} symplectic for η in dominant direction
- Moment Polytope is Weyl polytope
- Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$
- New embeddings of affine Schubert variety and MV cycles into loop group

Notation

• K simple, compact Lie group,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,
- \mathfrak{s} Lie algebra of S,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,
- \mathfrak{s} Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,
- $\mathfrak s$ Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,
- $\mathfrak s$ Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,
- $\mathfrak s$ Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group,
- $S \cong (S^1)^n$ maximal torus of K,
- $\mathfrak s$ Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K,
- $\mathfrak s$ Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- $\mathfrak s$ Lie algebra of S,
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- \mathfrak{s} Lie algebra of S, purely imaginary, traceless, diagonal matrices
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$,
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- \mathfrak{s} Lie algebra of S, purely imaginary, traceless, diagonal matrices
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$, $\Omega(SU_{n+1})$
- $S_{\mathbb{C}}$ complexification of S,
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- \mathfrak{s} Lie algebra of S, purely imaginary, traceless, diagonal matrices
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$, $\Omega(SU_{n+1})$
- $S_{\mathbb{C}}$ complexification of S, diagonal matrices of $SL_{n+1}(\mathbb{C})$
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S,
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- \mathfrak{s} Lie algebra of S, purely imaginary, traceless, diagonal matrices
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$, $\Omega(SU_{n+1})$
- $S_{\mathbb{C}}$ complexification of S, diagonal matrices of $SL_{n+1}(\mathbb{C})$
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S, ker(exp)
- Δ simple roots,

- K simple, compact Lie group, SU_{n+1}
- $S \cong (S^1)^n$ maximal torus of K, diagonal matrices of SU_{n+1}
- \mathfrak{s} Lie algebra of S, purely imaginary, traceless, diagonal matrices
- $\Omega(S) \subseteq \Omega(K)$ (based) loop group, i.e maps $S^1 \to S$ (resp. K), with $1 \mapsto 1$, $\Omega(SU_{n+1})$
- $S_{\mathbb{C}}$ complexification of S, diagonal matrices of $SL_{n+1}(\mathbb{C})$
- $X_*(S) = \operatorname{Hom}(S^1, S) \subseteq \mathfrak{s}$ cocharacters of S, ker(exp)
- Δ simple roots, same as $\mathrm{SL}_{n+1}(\mathbb{C})$

The Loop Model

The path model

• Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$

The path model

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$
- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

- Π paths in $\mathfrak s$ starting in 0, ending in $X_*(S)$
- (Littelmann) root operators $\Pi \to \Pi$ for $\alpha \in \Delta$

Theorem (R.)

• Root operators descend to operators on $\Omega(S)$

- Root operators descend to operators on $\Omega(S)$
- Resulting crystals parametrize bases for representations of Langlands dual group of K (as in MV case)

- Root operators descend to operators on $\Omega(S)$
- Resulting crystals parametrize bases for representations of Langlands dual group of K (as in MV case)
- Weights are computable via winding numbers

- Root operators descend to operators on $\Omega(S)$
- Resulting crystals parametrize bases for representations of Langlands dual group of K (as in MV case)
- Weights are computable via winding numbers
- Root operators are given by multiplication in the loop group

- Root operators descend to operators on $\Omega(S)$
- Resulting crystals parametrize bases for representations of Langlands dual group of K (as in MV case)
- Weights are computable via winding numbers
- Root operators are given by multiplication in the loop group

Theorem (R.)

- Root operators descend to operators on $\Omega(S)$
- Resulting crystals parametrize bases for representations of Langlands dual group of K (as in MV case)
- Weights are computable via winding numbers
- Root operators are given by multiplication in the loop group

Notation: $\mathcal{A}\eta$ loop model generated from η

Results

Root operators descend to loop group of compact torus.

- Loop model embeds into generalized Bott–Samelson manifold Γ_η
- Γ_{η} symplectic for η in dominant direction
- Moment Polytope is Weyl polytope
- Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$
- New embeddings of affine Schubert variety and MV cycles into loop group

Results

- $\checkmark\,$ Root operators descend to loop group of compact torus.
- Loop model embeds into generalized Bott–Samelson manifold Γ_η
- Γ_{η} symplectic for η in dominant direction
- Moment Polytope is Weyl polytope
- Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$
- New embeddings of affine Schubert variety and MV cycles into loop group

Bott-Samelson manifolds

• $\eta \in \Omega(S) \rightsquigarrow \Gamma_{\eta} := K_0 \times_{K'_0} \cdots \times_{K'_{t-1}} K_t / K'_t$ Bott–Samelson mfd

- $\eta \in \Omega(S) \rightsquigarrow \Gamma_{\eta} := K_0 \times_{K'_0} \cdots \times_{K'_{t-1}} K_t / K'_t$ Bott–Samelson mfd
- Example $K = SU_3, \eta = \alpha_1^{\vee} + \alpha_2^{\vee}$

- $\eta \in \Omega(S) \rightsquigarrow \Gamma_{\eta} := K_0 \times_{K'_0} \cdots \times_{K'_{t-1}} K_t / K'_t$ Bott–Samelson mfd
- Example $K = SU_3, \eta = \alpha_1^{\vee} + \alpha_2^{\vee}$

• $\eta \in \Omega(S) \rightsquigarrow \Gamma_{\eta} := K_0 \times_{K'_0} \cdots \times_{K'_{t-1}} K_t / K'_t$ Bott–Samelson mfd

 $\eta(z_0)$

• Example $K = SU_3, \eta = \alpha_1^{\vee} + \alpha_2^{\vee}$

- $\eta \in \Omega(S) \rightsquigarrow \Gamma_{\eta} := K_0 \times_{K'_0} \cdots \times_{K'_{t-1}} K_t / K'_t$ Bott–Samelson mfd
- Example $K = SU_3, \eta = \alpha_1^{\vee} + \alpha_2^{\vee}$ $\eta(z_1)$ $\eta(z_1)$ $\eta(z_0)$

 $K_0 \times_{K'_0} K_1 / K'_1 = SU_3 \times_S U(2) / S$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

 η

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

9

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

•
$$\pi_j((g_0, g_1, \dots, g_t)) = g_0 \cdots g_j$$

•
$$K_0 \times \cdots \times K_t$$
 acts on η

$$[g_0, \ldots, g_t] \cdot \eta(z) = \pi_j([g_0, \ldots, g_t]) \cdot \eta(z)$$
 for $z_i \le z \le z_{i+1}$

• smooth and S-equivariant embedding $\Gamma_{\eta} \to \Omega(K)$ via $f_{\eta}([g_0, \dots, g_t]) = [g_0, \dots, g_t].\eta.$

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

Theorem (R.)

• η dominant direction $\implies \Gamma_{\eta} \subseteq \Omega(K)$ symplectic

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

- η dominant direction $\implies \Gamma_{\eta} \subseteq \Omega(K)$ symplectic
- Symplectic form from Kirillov's orbit method

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

- η dominant direction $\implies \Gamma_{\eta} \subseteq \Omega(K)$ symplectic
- Symplectic form from Kirillov's orbit method
- moment map μ via restriction

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

- η dominant direction $\implies \Gamma_{\eta} \subseteq \Omega(K)$ symplectic
- Symplectic form from Kirillov's orbit method
- moment map μ via restriction
- $\mu(\Gamma_{\eta}) = \operatorname{conv}(W.\operatorname{wt}(\eta))$, W Weyl group

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

- η dominant direction $\implies \Gamma_{\eta} \subseteq \Omega(K)$ symplectic
- Symplectic form from Kirillov's orbit method
- moment map μ via restriction
- $\mu(\Gamma_{\eta}) = \operatorname{conv}(W.\operatorname{wt}(\eta))$, W Weyl group

 η dominant direction : $\iff \alpha(\eta)' \ge 0$ for $\alpha \in \Delta$ η dominant direction $\implies \mathcal{A}\eta \subseteq f_{\eta}(\Gamma_{\eta})$

Theorem (R.)

- η dominant direction $\implies \Gamma_{\eta} \subseteq \Omega(K)$ symplectic
- Symplectic form from Kirillov's orbit method
- moment map μ via restriction
- $\mu(\Gamma_{\eta}) = \operatorname{conv}(W.\operatorname{wt}(\eta))$, W Weyl group

Dominant direction sufficient, not necessary

• $\Omega(K)$ has left-invariant symplectic form

- + $\Omega(K)$ has left-invariant symplectic form
- Explicit computation solves this to

- $\Omega(K)$ has left-invariant symplectic form
- Explicit computation solves this to

$$\sum_{\substack{i=0,\dots,k\\j,l\leq i}} \left(\int_{t_i}^{t_{i+1}} -\eta(e^{i\varphi})^{-1} \eta(e^{i\varphi})' \,\mathrm{d}\varphi, \left[\mathrm{Ad}(\pi_i^{-1}\pi_j)(v_j), \mathrm{Ad}(\pi_i^{-1}\pi_l)(w_l) \right] \right)$$

- $\Omega(K)$ has left-invariant symplectic form
- Explicit computation solves this to

$$\sum_{\substack{i=0,\dots,k\\j,l\leq i}} \left(\lambda_i, \left[\operatorname{Ad}(\pi_i^{-1}\pi_j)(v_j), \operatorname{Ad}(\pi_i^{-1}\pi_l)(w_l)\right]\right)$$

- $\Omega(K)$ has left-invariant symplectic form
- Explicit computation solves this to

$$\sum_{\substack{i=0,\dots,k\\j,l\leq i}} \left(\lambda_i, \left[\operatorname{Ad}(\pi_i^{-1}\pi_j)(v_j), \operatorname{Ad}(\pi_i^{-1}\pi_l)(w_l)\right]\right)$$

 $\bullet \ {\sf Squint} \implies {\sf coadjoint} \ {\sf orbit} \ {\sf setting}$

• Γ_{η} S-equivariant, symplectic submanifold

- Γ_{η} S-equivariant, symplectic submanifold
- $\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(\mu(\text{torus fixed points}))$

- Γ_{η} S-equivariant, symplectic submanifold
- $\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(\mu(\text{torus fixed points}))$
- $\mu(\nu) = \operatorname{wt}(\nu)$ for torus fixed point ν

- Γ_{η} S-equivariant, symplectic submanifold
- $\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(\mu(\text{torus fixed points}))$
- $\mu(\nu) = \operatorname{wt}(\nu)$ for torus fixed point ν
- Dominant direction \implies wt(ν) \in conv(W.wt(η))

- Γ_{η} S-equivariant, symplectic submanifold
- $\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(\mu(\text{torus fixed points}))$
- $\mu(\nu) = \operatorname{wt}(\nu)$ for torus fixed point ν
- Dominant direction \implies wt(ν) \in conv(W.wt(η))
- W-action by K_0

- Γ_{η} S-equivariant, symplectic submanifold
- $\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(\mu(\text{torus fixed points}))$
- $\mu(\nu) = \operatorname{wt}(\nu)$ for torus fixed point ν
- Dominant direction \implies wt(ν) \in conv(W.wt(η))
- W-action by K_0

•
$$\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(W.\operatorname{wt}(\eta))$$

- Γ_{η} S-equivariant, symplectic submanifold
- $\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(\mu(\text{torus fixed points}))$
- $\mu(\nu) = \operatorname{wt}(\nu)$ for torus fixed point ν
- Dominant direction \implies wt(ν) \in conv(W.wt(η))
- W-action by K_0

•
$$\implies \mu(\Gamma_{\eta}) = \operatorname{conv}(W.\operatorname{wt}(\eta))$$

Results

 $\checkmark\,$ Root operators descend to loop group of compact torus Loop model embeds into generalized Bott–Samelson manifold Γ_η

 Γ_η symplectic for η in dominant direction

Moment Polytope is Weyl polytope

- Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$
- New embeddings of affine Schubert variety and MV cycles into loop group

Results

- $\checkmark\,$ Root operators descend to loop group of compact torus
- $\checkmark\,$ Loop model embeds into generalized Bott–Samelson manifold Γ_η
- $\checkmark \ \Gamma_\eta$ symplectic for η in dominant direction
- ✓ Moment Polytope is Weyl polytope
- Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$
- New embeddings of affine Schubert variety and MV cycles into loop group

• $\eta \in \Omega(S) \rightsquigarrow$ generalized gallery $\delta(\eta)$.

• $\Sigma(\delta(\eta)) = \mathcal{P}_0 \times_{\mathcal{Q}_0} \cdots \times_{\mathcal{Q}_{t-1}} \mathcal{P}_t / \mathcal{Q}_t$ BSDH-variety

- $\Sigma(\delta(\eta)) = \mathcal{P}_0 \times_{\mathcal{Q}_0} \cdots \times_{\mathcal{Q}_{t-1}} \mathcal{P}_t / \mathcal{Q}_t$ BSDH-variety
- $\Sigma(\delta(\eta))$ contains gallery model

• Iwasawa: $\operatorname{SL}_n(\mathbb{C}((t))) = \Omega^{\operatorname{pol}}(\operatorname{SU}_n) \operatorname{SL}(\mathbb{C}[|t|])$

- Iwasawa: $\operatorname{SL}_n(\mathbb{C}((t))) = \Omega^{\operatorname{pol}}(\operatorname{SU}_n) \operatorname{SL}(\mathbb{C}[|t|])$
- $\implies \mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t||]) = \Omega^{\mathsf{pol}}(\operatorname{SU}_n)$

- Iwasawa: $\operatorname{SL}_n(\mathbb{C}((t))) = \Omega^{\operatorname{pol}}(\operatorname{SU}_n) \operatorname{SL}(\mathbb{C}[|t|])$
- $\implies \mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t||]) = \Omega^{\mathsf{pol}}(\operatorname{SU}_n)$
- affine Schubert variety $X_{\mathrm{wt}(\eta)} = \overline{\mathrm{SL}_n(\mathbb{C}[|t|]). \operatorname{wt}(\eta)} \subseteq \mathcal{G}$

- Iwasawa: $\operatorname{SL}_n(\mathbb{C}((t))) = \Omega^{\operatorname{pol}}(\operatorname{SU}_n) \operatorname{SL}(\mathbb{C}[|t|])$
- $\implies \mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t||]) = \Omega^{\mathsf{pol}}(\operatorname{SU}_n)$
- affine Schubert variety $X_{wt(\eta)} = \overline{SL_n(\mathbb{C}[|t|]). wt(\eta)} \subseteq \mathcal{G}$
- $\pi_{\eta}: \Sigma(\delta(\eta)) \to X_{\mathrm{wt}(\eta)}$

- Iwasawa: $\operatorname{SL}_n(\mathbb{C}((t))) = \Omega^{\operatorname{pol}}(\operatorname{SU}_n) \operatorname{SL}(\mathbb{C}[|t|])$
- $\implies \mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t||]) = \Omega^{\mathsf{pol}}(\operatorname{SU}_n)$
- affine Schubert variety $X_{\mathrm{wt}(\eta)} = \overline{\mathrm{SL}_n(\mathbb{C}[|t|]). \operatorname{wt}(\eta)} \subseteq \mathcal{G}$
- $\pi_{\eta}: \Sigma(\delta(\eta)) \to X_{\mathrm{wt}(\eta)}$
- $S_{\mathbb{C}}$ -action \rightsquigarrow Białynicki-Birula cells

- Iwasawa: $\operatorname{SL}_n(\mathbb{C}((t))) = \Omega^{\operatorname{pol}}(\operatorname{SU}_n) \operatorname{SL}(\mathbb{C}[|t|])$
- $\implies \mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t||]) = \Omega^{\mathsf{pol}}(\operatorname{SU}_n)$
- affine Schubert variety $X_{\mathrm{wt}(\eta)} = \overline{\mathrm{SL}_n(\mathbb{C}[|t|])} \cdot \mathrm{wt}(\eta) \subseteq \mathcal{G}$
- $\pi_{\eta}: \Sigma(\delta(\eta)) \to X_{\mathrm{wt}(\eta)}$
- $S_{\mathbb{C}}$ -action \rightsquigarrow Białynicki-Birula cells
- Gaussent, Littelmann [2005]: $\Sigma(\delta(\gamma))_{\mu}$ cell then $\pi_{\eta}(\overline{\Sigma(\delta(\gamma))_{\mu}})$ MV cycle

• Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}
- $\operatorname{Im}(\pi_\eta \circ \varphi) \subset \Omega(\operatorname{SU}_n)$

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}
- $\operatorname{Im}(\pi_{\eta} \circ \varphi) \subset \Omega(\operatorname{SU}_n)$
- $\operatorname{Im}(\pi_{\eta} \circ \varphi)$ affine Schubert variety

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}
- $\operatorname{Im}(\pi_\eta \circ \varphi) \subset \Omega(\operatorname{SU}_n)$
- $\operatorname{Im}(\pi_{\eta} \circ \varphi)$ affine Schubert variety
- $\pi_{\eta} \circ \varphi(\overline{\Gamma_{\eta,\nu}})$ *MV cycle*

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}
- $\operatorname{Im}(\pi_\eta \circ \varphi) \subset \Omega(\operatorname{SU}_n)$
- $\operatorname{Im}(\pi_{\eta} \circ \varphi)$ affine Schubert variety
- $\pi_{\eta} \circ \varphi(\overline{\Gamma_{\eta,\nu}})$ *MV cycle*

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}
- $\operatorname{Im}(\pi_\eta \circ \varphi) \subset \Omega(\operatorname{SU}_n)$
- $\operatorname{Im}(\pi_{\eta} \circ \varphi)$ affine Schubert variety
- $\pi_{\eta} \circ \varphi(\overline{\Gamma_{\eta,\nu}})$ *MV cycle*

Everything without computing Iwasawa

- Construct $\varphi : \Gamma_{\eta} \tilde{\rightarrow} \Sigma(\delta(\eta))$
- φ respects path/gallery model, S-equivariant
- Results on BB cells for $\Sigma(\delta(\eta))$ hold for Γ_{η}
- $\operatorname{Im}(\pi_\eta \circ \varphi) \subset \Omega(\operatorname{SU}_n)$
- $\operatorname{Im}(\pi_{\eta} \circ \varphi)$ affine Schubert variety
- $\pi_{\eta} \circ \varphi(\overline{\Gamma_{\eta,\nu}})$ *MV cycle*

Everything without computing lwasawa Holds for general ${\cal K}$

- $\checkmark\,$ Root operators descend to loop group of compact torus
- $\checkmark\,$ Loop model embeds into generalized Bott–Samelson mfd Γ_η
- $\checkmark \ \Gamma_\eta$ symplectic for η in dominant direction
- \checkmark Moment Polytope is Weyl polytope
 - Γ_{η} diffeomorphic to BSDH-variety $\Sigma(\delta)$
- New embeddings of affine Schubert variety and MV cycles into loop group

- $\checkmark\,$ Root operators descend to loop group of compact torus
- $\checkmark\,$ Loop model embeds into generalized Bott–Samelson mfd Γ_η
- $\checkmark\ \Gamma_\eta$ symplectic for η in dominant direction
- \checkmark Moment Polytope is Weyl polytope
- \checkmark Γ_η diffeomorphic to BSDH-variety Σ(δ)
- New embeddings of affine Schubert variety and MV cycles into loop group

Flexibility

Homotopy η_s is fitted to path model

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

$$\varphi: \Gamma_s \to \Gamma_1$$
$$\varphi = f_1^{-1} \circ \lim_{s \to 1} f_s$$

•
$$\Gamma_{\eta} = \mathrm{SU}(3) \times_{S} \mathrm{U}(2)/S$$

- $\Gamma_{\eta} = \mathrm{SU}(3) \times_{S} \mathrm{U}(2)/S$
- $\Gamma_1 = \mathrm{SU}(3) \times_S \mathrm{U}(2) \times_S \mathrm{U}(2) \times_S \mathrm{U}(2) / S$

Theorem

• Γ_{η} not-symplectic $\implies \exists \eta_s$ such that Γ_1 symplectic
- Γ_{η} not-symplectic $\implies \exists \eta_s$ such that Γ_1 symplectic
- $\forall \eta \exists \eta_s : \eta_1 \text{ concatenation of edges}$

- Γ_{η} not-symplectic $\implies \exists \eta_s$ such that Γ_1 symplectic
- $\forall \eta \exists \eta_s : \eta_1 \text{ concatenation of edges}$
- \implies new class of loops with $\mu(\Gamma_{\eta})$ Weyl polytope

•
$$\mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t|])$$

- $\mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t|])$
- $S(\mathbb{C}\left((t)\right))/S(\mathbb{C}[|t|]) \subseteq \mathcal{G}$

- $\mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t|])$
- $S(\mathbb{C}\left((t)\right))/S(\mathbb{C}[|t|]) \subseteq \mathcal{G}$
- $S(\mathbb{C}((t)))/S(\mathbb{C}[|t|]) = X_*(S)$

- $\mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t|])$
- $S(\mathbb{C}\left((t)\right))/S(\mathbb{C}[|t|]) \subseteq \mathcal{G}$
- $S(\mathbb{C}((t)))/S(\mathbb{C}[|t|]) = X_*(S)$

- $\mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t|])$
- $S(\mathbb{C}\left((t)\right))/S(\mathbb{C}[|t|]) \subseteq \mathcal{G}$
- $\bullet \ S(\mathbb{C}((t)))/S(\mathbb{C}[|t|]) = X_*(S) \implies \mathsf{discrete}$

- $\mathcal{G} = \operatorname{SL}_n(\mathbb{C}((t))) / \operatorname{SL}_n(\mathbb{C}[|t|])$
- $S(\mathbb{C}((t))) / S(\mathbb{C}[|t|]) \subseteq \mathcal{G}$
- $S(\mathbb{C}((t)))/S(\mathbb{C}[|t|]) = X_*(S) \implies \text{discrete}$
- $\Omega(S) \subseteq \Omega(SU_n)$ non-discrete

For simplicity K simply connected

For simplicity \boldsymbol{K} simply connected

Theorem

• η loop in dominant direction

For simplicity K simply connected

- η loop in dominant direction
- $\nu \in \Omega(S)$ trivial homotopy class

For simplicity K simply connected

- η loop in dominant direction
- $\nu \in \Omega(S)$ trivial homotopy class
- condition on stabilizer of ν

For simplicity K simply connected

- η loop in dominant direction
- $\nu \in \Omega(S)$ trivial homotopy class
- condition on stabilizer of ν

For simplicity K simply connected

- η loop in dominant direction
- $\nu \in \Omega(S)$ trivial homotopy class
- condition on stabilizer of ν

$$\Gamma_{\eta} \to \Sigma(\delta(\eta)) \to \Omega(K)$$
$$[g_0 : \dots : g_t] \mapsto \pi_{\eta} \circ \varphi([g_0 : \dots : g_t])\nu$$

For simplicity K simply connected

Theorem

- η loop in dominant direction
- $\nu \in \Omega(S)$ trivial homotopy class
- condition on stabilizer of ν

$$\Gamma_{\eta} \to \Sigma(\delta(\eta)) \to \Omega(K)$$
$$[g_0 : \dots : g_t] \mapsto \pi_{\eta} \circ \varphi([g_0 : \dots : g_t])\nu$$

Image diffeomorphic to affine Schubert variety

For simplicity K simply connected

Theorem

- η loop in dominant direction
- $\nu \in \Omega(S)$ trivial homotopy class
- condition on stabilizer of ν

$$\Gamma_{\eta} \to \Sigma(\delta(\eta)) \to \Omega(K)$$
$$[g_0 : \dots : g_t] \mapsto \pi_{\eta} \circ \varphi([g_0 : \dots : g_t])\nu$$

Image diffeomorphic to affine Schubert variety Induced embedding isotopic to inclusion map, also for MV cycles.

Results

- $\checkmark\,$ Root operators descend to loop group of compact torus.
- $\checkmark\,$ Loop model embeds into generalized Bott–Samelson manifold Γ_η
- $\checkmark\ \Gamma_\eta$ symplectic for η in dominant direction
- ✓ Moment Polytope is Weyl polytope
- $\checkmark \ \Gamma_\eta \text{ diffeomorphic to BSDH-variety } \Sigma(\delta)$ New embeddings of affine Schubert variety and MV cycles into loop group

Results

- $\checkmark\,$ Root operators descend to loop group of compact torus.
- $\checkmark\,$ Loop model embeds into generalized Bott–Samelson manifold Γ_η
- $\checkmark \ \Gamma_{\eta}$ symplectic for η in dominant direction
- ✓ Moment Polytope is Weyl polytope
- \checkmark Γ_η diffeomorphic to BSDH-variety Σ(δ)
- ✓ New embeddings of affine Schubert variety and MV cycles into loop group

The road ahead

More Work

Where to go from here

Where to go from here

• Compare affine Schubert variety basis and Bott–Samelson basis of $H(\Omega(K))$ using π_{ν}

Where to go from here

- Compare affine Schubert variety basis and Bott–Samelson basis of $H(\Omega(K))$ using π_{ν}
- Extend root operators to $\Omega(K),$ Birkhoff decomposition

Where to go from here

- Compare affine Schubert variety basis and Bott–Samelson basis of $H(\Omega(K))$ using π_{ν}
- Extend root operators to $\Omega(K),$ Birkhoff decomposition
- $\bigcup_{\nu} \operatorname{Im}(\pi_{\nu})$ what is this space?

Thanks for your attention, and stay healthy

Thanks for your attention, and stay healthy